Opposite Hopf-Galois structures and opposite braces

Paul Truman

Braces and Hopf-Galois Theory Keele University Wednesday 19th June, 2019

Overview

- This is joint work with Alan Koch (Agnes Scott College, Georgia).
- Each Hopf-Galois structure on a Galois extension of fields has a natural "opposite" Hopf-Galois structure.
- We study the relationship between a Hopf-Galois structure and its opposite.
- In particular, we address certain isomorphism questions for the underlying Hopf algebras.
- Using the connection between Hopf-Galois structures and (skew left) braces, we formulate a notion of an "opposite" brace, and study properties of this construction.

Hopf-Galois structures on Galois field extensions

Let L/K be a Galois extension of fields, with Galois group G.

Theorem (Greither and Pareigis, 1987)

- The Hopf-Galois structures on L/K correspond to regular subgroups of Perm(G) that are normalized by the image of G under the left regular representation λ : G → Perm(G).
- The Hopf-Galois structure corresponding to such a subgroup N has Hopf algebra L[N]^G, together with a prescribed action on L.

Example

- $\rho(G)$ corresponds to the *Classical structure*, with Hopf algebra K[G].
- If G is nonabelian then λ(G) corresponds to the Canonical nonclassical structure, with Hopf algebra H_λ = L[λ(G)]^G.

Opposite Hopf-Galois structures

Proposition (Greither and Pareigis)

If N is a regular subgroup of Perm(G) that is normalized by $\lambda(G)$, then so is $N' = Cent_{Perm(G)}(N)$.

Some properties of this construction:

•
$$(N')' = N;$$

•
$$N \cong N';$$

•
$$N = N'$$
 if and only if N is abelian.

If $H = L[N]^G$, let $H' = H[N']^G$. Call the Hopf-Galois structure given by H' the *Opposite* of the one given by H.

Example

If $N = \rho(G)$ then $N' = \lambda(G)$. The canonical nonclassical structure is the

opposite of the classical structure.

Existing results on opposite structures

Let H give a Hopf-Galois structure on L/K.

Lemma

For $h \in H$, $h' \in H'$, $x \in L$, we have $h' \cdot (h \cdot x) = h \cdot (h' \cdot x)$.

Theorem (T, 2018)

An element $x \in L$ is a free generator of L as an H-module if and only if it is a free generator of H as an H'-module.

Theorem (T, 2018)

Suppose that L/K is an extension of local or global fields, and let \mathfrak{O}_L denote the ring of algebraic integers in L. Let $\mathfrak{A}, \mathfrak{A}'$ denote the associated orders of \mathfrak{O}_L in H, H'. The ring \mathfrak{O}_L is a free \mathfrak{A} -module if and only if it is a free \mathfrak{A}' -module.

Isomorphism problems

There has recently been interest in the question of when two Hopf algebras H_1 , H_2 giving Hopf-Galois structures on L/K are isomorphic, either as K-Hopf algebras or as K-algebras.

Theorem

Write $H_1 = L[N_1]^G$, $H_2 = L[N_2]^G$. Then $H_1 \cong H_2$ as K-Hopf algebras if and only if there is an isomorphism of groups $\phi : N_1 \xrightarrow{\sim} N_2$ that respects the actions of G:

$$\phi(\lambda(g)\eta\lambda(g^{-1})) = \lambda(g)\phi(\eta)\lambda(g^{-1})$$
 for all $\eta \in \mathsf{N}_1, \ g \in \mathsf{G}.$

The question of K-algebra isomorphism is more delicate: no simple criterion is currently known.

For simplicity, assume K has characteristic zero from now on.

Isomorphism problems for K[G] and $L[\lambda(G)]^G$

Theorem

Suppose that G is nonabelian. Then $K[G] \ncong L[\lambda(G)]^G$ as K-Hopf algebras.

Proof.

For $g, h \in G$ we have

$$\lambda(g)\rho(h)\lambda(g^{-1}) = \lambda(g)\lambda(g^{-1})\rho(h) = \rho(h)$$

and

$$\lambda(g)\lambda(h)\lambda(g^{-1}) = \lambda(ghg^{-1}).$$

Hence $\lambda(G)$ centralizes $\rho(G)$, but does not centralize itself. Therefore there is no isomorphism $\phi : \rho(G) \xrightarrow{\sim} \lambda(G)$ with the required property.

Isomorphism problems for K[G] and $L[\lambda(G)]^G$

Theorem (Greither)

We have $K[G] \cong L[\lambda(G)]^G$ as K-algebras.

Sketch Proof.

- Let $K[G] = A_1 \times \cdots \times A_r$ be the Wedderburn decomposition of K[G].
- For each *i*, let $B_i = L \otimes_K A_i$. Then $L[\lambda(G)] \cong B_1 \times \cdots \times B_r$.
- The action of G on $L[\lambda(G)]$ is inner, so respects this decomposition.
- For each *i*, the *K*-algebras *A* such that $L \otimes_K A \cong B_i$ are classified by $H^1(G, \operatorname{Aut}(B_i))$; in fact, in this case, by $H^1(G, \operatorname{Inn}(B_i))$.
- There is a surjection H¹(G, B_i[×]) → H¹(G, Inn(B_i)), but the domain is trivial by a generalization of Hilbert's theorem 90.

Isomorphism problems for H, H' in general

Theorem

In general, $H \cong H'$ as K-algebras.

Proof.

There exists $x \in L$ such that $L = H \cdot x = H' \cdot x$. Define $\varphi : H \to H'$ by $\varphi(a) \cdot x = a \cdot x$ for all $a \in H$. For $a, b \in H$ we have:

$$\varphi(ab) \cdot x = (ab) \cdot x$$

$$= a \cdot (b \cdot x) (L \text{ is an } H \text{-module})$$

$$= a \cdot (\varphi(b) \cdot x) (\text{definition of } \varphi)$$

$$= \varphi(b) \cdot (a \cdot x) (\text{actions of } H, H' \text{ on } L \text{ commute})$$

$$= \varphi(b) \cdot (\varphi(a) \cdot x) (\text{definition of } \varphi)$$

$$= (\varphi(b)\varphi(a)) \cdot x) (L \text{ is an } H' \text{-module}).$$

Isomorphism problems for H, H' in general

Proof continued.

We have seen that for $a, b \in H$ we have

$$\varphi(ab) \cdot x = (\varphi(b)\varphi(a)) \cdot x.$$

Since x is a free generator of L as an H'-module, this implies that

$$\varphi(ab) = \varphi(b)\varphi(a).$$

Therefore φ is an anti-isomorphism of *K*-algebras. Composing with the antipode of *H* gives an isomorphism of *K*-algebras.

Isomorphism problems for H, H' in general

Conjecture

If H is non-commutative then $H \ncong H'$ as K-Hopf algebras.

Example

- We have seen that $K[G] \ncong L[\lambda(G)]^G$ for G nonabelian.
- If $G \cong Q_8$ then L/K admits 6 structures of dihedral type. The conjecture holds for these.
- Suppose that |G| = pq with p, q primes and $p \equiv 1 \pmod{q}$.
 - If G is cyclic then there are 2(q-1) structures of nonabelian type.
 - If G is nonabelian then there are 2p(q-2) structures of nonabelian type.

The conjecture holds for all of these.

• If
$$|G| = p^3$$
 then ...?

Opposite Braces

Recall that L/K is a Galois extension of fields with Galois group G. If $H = L[N]^G$ gives a Hopf-Galois structure on L/K then H yields a (skew left) brace $\mathfrak{B} = (B, \cdot, \circ)$ with $(B, \cdot) \cong N$ and $(B, \circ) \cong G$.

Lemma

The brace corresponding to the Hopf-Galois structure given by H' is $\mathfrak{B}' = (B, \cdot', \circ)$, where

$$x \cdot y = y \cdot x$$
 for all $x, y \in B$.

In general: given a brace \mathfrak{B} , call the brace \mathfrak{B}' the *Opposite Brace* to \mathfrak{B} . Note that if (B, \cdot) is abelian then $\mathfrak{B} \cong \mathfrak{B}'$ as braces.

Some wishful thinking...

Distinct Hopf-Galois structures can yield isomorphic braces.

Question

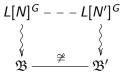
If two Hopf-Galois structures involve isomorphic Hopf algebras, do they yield isomorphic braces?

We have seen that $\mathfrak{B} \cong \mathfrak{B}'$ as braces if (B, \cdot) is abelian.

Question

Do we have $\mathfrak{B} \cong \mathfrak{B}'$ only if (B, \cdot) is abelian?

If the answer to both of these questions is "yes" then we can prove the conjecture:



Unfortunately ...

- \ldots the answer to both of the questions on the previous slide is "no":
 - Hopf-Galois structures involving isomorphic Hopf algebras need not yield isomorphic braces.
 - It is possible for $\mathfrak{B} \cong \mathfrak{B}'$ to hold with (B, \cdot) nonabelian.

The silver lining: since the answer to *both* questions is "no", the original conjecture is still open!

And we have lots of new questions to think about:

- Are there any conditions under which Hopf algebra isomorphism implies brace isomorphism, or vice-versa?
- Can we characterize braces that are isomorphic to their opposites?
- ...?

Thank you for your attention.